

V2GB – Vehicle to Grid Britain Contributing to the Decarbonisation of Power and Transport

Shane Slater
Director – Element Energy

LCV2019 Event Sponsor:

V2GB – Vehicle To Grid Britain Contributing to the decarbonisation of power and transport

LCV 2019

Element Energy Ltd

Shane Slater, share.slater@element-energy.co.uk
Foaad Tahir, foaad.tahir@element-energy.co.uk
Nicole Ferguson, nicole.ferguson@element-energy.co.uk
energy.co.uk

Michael Joos, michael.joos@element-energy.co.uk

elementenergy

Element Energy, a consultancy focused on the low carbon energy sector

- Element Energy is a specialist energy consultancy, with an excellent reputation for rigorous and insightful analysis in the area of low carbon energy
- We consult on both technical and strategic issues our technical and engineering understanding of the real-world challenges support our strategic work and vice versa
- Element Energy covers all major low carbon energy sectors:

- 1. V2Grid Britain Overview
- 2. V2G revenues to 2030
- 3. V2G Costs to 2030
- 4. GB system value of V2G

Vehicle 2 Grid Britain – Exploring the feasibility of V2G in Britain

How viable is V2G in Britain?

The project and its objectives

- V2GB is an Innovate UK funded project assessing the techno-economic viability of V2G in Britain.
- Dedicated work packages are set up to investigate
 - The long term demand for V2G type services in the GB electricity system
 - The early opportunity and revenues that V2G could capture
 - The business models and value chains which are best suited to capture the value of V2G

The project partners

- The study is conducted by a consortium of partners covering the whole V2G supply chain, among them a car OEM, the British transmission system operator, a distribution network operator, and an aggregator
- Specialised consultancies and a research organisation add to the analytic expertise of the consortium

V2GB – Vehicle to Grid Britain Work Package 4: Scale-up and system impact to 2030

Scaling up V2G in Britain: from niche application to mass market

- Revenue streams: How are revenues streams changing over time? Which revenue stream will be dominant and drive viability?
- **Costs:** What are the main cost components? What is the potential for cost reduction? What reductions must be achieved to reach economic viability?
- **System value of V2G:** How can V2G contribute to decarbonisation of power and transport? How do increased renewable generation and competition from alternative flexibility providers affect the system value of V2G?

- 1. V2Grid Britain Overview
- 2. V2G revenues to 2030
- 3. V2G Costs to 2030
- 4. GB system value of V2G

DNO REVENUES 2030 – Potentially Valuable.... but time and location sensitive

Revenue variation across 21 zones

Notes

- All based on WPD published data on active congestion management zones. Based on Gone Green 2024 scenario.
- Using average utilisation rate of service in particular zone (as specified by WPD)
- Reason for difference between regions is expected call rate (number of hours per day, days per week, seasonality of calls etc).
- Note these 21 zones represent a small fraction of all WPD areas i.e. these are only zones where congested is expected (out of 100's)
- Most zones expected to have zero market value for congestion.
- Revenues for V2G are incremental, i.e. in addition to those for smart charging
- Daily charging requirement 6.6kWh; export limit 5kWh

REVENUES 2030

Insights

- DNO service highest potential value, but limited number of zones, most zero value
- Daily arbitrage has sustained value for smart this emerges from simple tariff structure; for V2G, concern is battery degradation

Notes

DNO services: Based on average utilisation from all 21 of WPD active congestion zones (these being a small fraction of all WPD areas). High: average of 5 most highly utilized zones. Low: average of 5 least utilized zones (most areas have value of zero – no congestion expected)

ESO revenues: Based on CENEX WP 2 data (lower FFR value, £5/MW/h), extrapolated to 2030 by estimating future FFR demand and EV capability to provide it (through V2G and smart charging); High: high plug in rates; Low: low plug in rates¹.

Import savings / arbitrage: Using whole system energy dispatch model, accounting for marginal production costs, as well as capacity savings in dispatch model.

High: unconstrained V2G scenario (*); Low: constrained V2G scenario; assuming V2G is used to offset domestic demand

- 1. V2Grid Britain Overview
- 2. V2G revenues to 2030
- 3. V2G Costs to 2030
- 4. GB system value of V2G

Cost reduction of V2G hardware

Cost-down trajectory for V2G charger

Notes

Costs based on 7kW charger

- Learning rates based on those achieved in proxy technologies (low kW residential solar inverters);
 - High: 11% learning rate
 - Low: 15% learning rate
- Using IEA global EV rollout projection
- High cost in 2030: £1160 on-cost
- Low cost in 2030: £660 on cost
- Further cost reduction through use of new technologies (GaN)

Notes

- Figures cross-checked and align with a bottom-up estimate based on key component costs.
- Top down (learning rate) and bottom up (component level) give similar projections to 2030.

COSTS 2030

Annual cost with simple 5 year capital depreciation

Notes

- Cost of energy: cost of energy to provide DNO service; assuming 85% full roundtrip efficiency, residential electricity price of 15p/kWh; negligible in "low" scenario due to low discharge in least utilised congestion zones¹
- Aggregation service cost: £24/EV/y (from Moixa)

Annual cost with simple 10 year cap. depreciation

Notes continued

- Degradation: based on total throughput of 4500kWh/annum; assuming EV battery cost of £120/kWh, remaining capacity of 90% at end of 8 year warranty, 15,000 miles/y; 0.25kWh/mile.
- Degradation "low" assumes there is no issue with degradation

Cost reduction of V2G hardware is essential to make business models feasible

Cost vs revenues of V2G 5y lifetime

Cost vs revenues 10y lifetime

Conclusions: likely to achieve viability by 2030, provided the following:

Costs:

- Critical that commercial model able to annualise cost over long life, with low discount rate.
- Degradation almost as important as hardware in annualised costs
- Hardware costs must come down to allow economic viability beyond unusual edge cases

Revenues:

High revenue case mostly reliant on DSO revenues in congested areas –time and location sensitive; most WPD areas not
expecting congestion.

- 1. V2Grid Britain Overview
- 2. V2G revenues to 2030
- 3. V2G Costs to 2030
- 4. GB system value of V2G

Multi-sectoral hourly dispatch model for system adequacy in low carbon system – price maker evaluates competition between technologies.

Whole system value dispatch modelling in 2030

System costs and benefits of smart charging and V2G in 2030 (4M EV; ca 1M V2G)

Clear system value of smart charging over passive

- Most significant value to the system is associated with smart charging (relative to passive)
 - Passive charging uses up significant network capacity.
 - Regulation could change to encourage smart charging as a minimum.
 - Smart charging supports cost avoidance (networks) as well as operational efficiencies

V2G deployed until marginal savings = marginal cost

- Constrained scenario limits battery utilization to + 2000kWh/annum for V2G
- Unconstrained (to level where marginal savings = marginal cost) results in ca. 4000kWh/annum

Flexibility is key to supporting high levels of VRES penetration: the two sectors must grow together to be sustainable

Reducing marginal value of storage

In a grid where supply and demand capacities do not vary, marginal value of deployment reduces.

V2G could provide a huge storage resource at low cost

Increasing VRES and Flexibility

Flexibility capacity can grow sustainably in a grid where VRES is increasing.

It will limit curtailment of VRES and requirement for dispatchable generation